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Statistical Confidence Levels 
 

Application to Error Probability Estimation 
 

Justin D. Redd, Ph.D. 
 

Note: Versions of this article have been previously published in Lightwave Magazine 
https://www.lightwaveonline.com/home/article/16647704/explaining-those-ber-testing-mysteries, and in the Maxim 
Integrated Products “Maxim Engineering Journal” (volume 37). 
 

I. The Application: Estimation of Bit Error Probability 
 

Many components used in digital communication systems, such as the MAX3675 and MAX3875, are 
required to meet minimum specifications for probability of bit error, P().  P() can be estimated by 
comparing the output bit pattern of a system with a pre-defined bit pattern applied to the input.  Any 
discrepancies between the input and output bit streams are flagged as errors.  The ratio of the number of 
detected bit errors, , to the total number of bits transmitted, n, is P’(), where the prime (’) character 
signifies that P’() is an estimate of the true P().  The quality of the estimate improves as the total 
number of transmitted bits increases.  This can be expressed mathematically as: 
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It is important to transmit enough bits through the system to ensure that P’() is an accurate reflection of 
the true P() (that would be obtained if the test were allowed to proceed for an infinite time period).  In 
the interest of limiting testing to a reasonable length of time, however, it is important to know the 
minimum number of bits for a statistically valid test. 
 
In many cases, we only need to verify that the P() is at least as good as some pre-defined standard.  In 
other words, it is sufficient to prove that the P() is less than some upper limit.  For example, many 
telecommunication systems require a P() of 10-10 or better (an upper limit of 10-10).   The statistical idea 
of associating a confidence level with an upper limit can be used to postulate, with quantifiable 
confidence, that the true P() is less than the specified limit.  The primary advantage of this method is that 
it provides a method to trade-off test time versus measurement accuracy. 
 

II. Definition and Interpretation of Statistical Confidence Level 
 

Statistical confidence level is defined as the probability, based on a set of measurements, that the actual 
probability of an event is better than some specified level.  (For purposes of this definition, actual 
probability means the probability that would be measured in the limit as the number of trials tends toward 
infinity.)  When applied to P() estimation, the definition of statistical confidence level can be restated as: 
the probability, based on  detected errors out of n bits transmitted, that the actual P() is better than a 
specified level,  (such as 10-10).  Mathematically, this can be expressed as 
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where P[ ] indicates probability and CL is the confidence level.  Since confidence level is, by definition, a 
probability, the range of possible values is 0 – 100%.  
 

Once the confidence level has been computed we may say that we have CL percent confidence that the 
P() is better than .  Another interpretation is that, if we were to repeat the bit error test many times and 
re-compute P’() = /n for each test period, we would expect P’() to be better than  for CL percent of 
the measurements. 
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III. Confidence Level Calculation 
 
A. The Binomial Distribution Function 
 
Calculation of confidence levels is based on the binomial distribution function, the details of which are 
included in many statistics texts 1,2.  The binomial distribution function is generally written as 
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Equation (3) gives the probability that k events (i.e., bit errors) occur in n trials (i.e., n bits transmitted), 
where p is the probability of event occurrence (i.e., a bit error) in a single trial and q is the probability that 
the event does not occur (i.e., no bit error) in a single trial.  Note that the binomial distribution models 
events that have two possible outcomes, such as success/failure, heads/tails, error/no error, etc., and 
therefore p + q = 1. 
 
When we are interested in the probability that N or fewer events occur (or, conversely, greater than N 
events occur) in n trials, then the cumulative binomial distribution function (Equation 4) is useful: 
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Graphical representations of Equations (3) and (4), along with some of their properties, are summarized in 
Figure 1. 
 
B. Application of the Binomial Distribution Function to Confidence Level Calculation 
 
In a typical confidence level measurement, we start by hypothesizing a value for p (the probability of bit 
error in the transmission of a single bit) and we choose a satisfactory level of confidence. We will use ph 
to represent our chosen hypothetical value of p.  Generally we choose these values based on an imposed 
specification limit (e.g., if the specification is P()  10-10, we choose ph = 10-10 and choose a confidence 
level of, say 99%). We can then use Equation (4) to determine the probability, P( > N |  ph), that more 
than N bit errors will occur when n total bits are transmitted, based on ph.   If, during actual testing, less 
than N bit errors occur (even though P( > N |  ph) is high) then there are two possible conclusions:  (a) we 
just got lucky, or (b) the actual value of p is less than ph.  If we repeat the test over and over and continue 
to measure less than N bit errors, then we become more and more confident in conclusion (b).  A measure 
of our level of confidence in conclusion (b) is defined as P( > N |  ph).  This is because if ph = p, we 
would have had a high probability of detecting more bit errors than N.  When we measure less than N 
errors, we conclude that p is probably less than ph, and we define the probability that our conclusion is 
correct as the confidence level.  In other words, we are CL% confident that P() (the actual probability of 
bit error) is less than ph. 
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Figure 1.  The binomial distribution function 

 
 
In terms of the cumulative binomial distribution function, the confidence level is defined as 
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where CL is the confidence level in terms of a percent.  
 
As noted above, when using the confidence level method we generally choose a hypothetical value of p 
(ph) along with a desired confidence level (CL) and then solve Equation (5) to determine how many total 
bits, n, we must transmit (with N or less errors) through the system in order to prove our hypothesis.  
Solving for n and N, can prove difficult unless some approximations are used. 
 
If np > 1 (i.e., we transmit at least as many bits as the mathematical inverse of the bit error rate) and k has 
the same order of magnitude as np, then the Poisson theorem1  (Equation 6) provides a conservative 
estimate of the binomial distribution function. 
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n = total number of trials  
      (i.e., total bits transmitted) 
k = number of events occurring in 
      n trials (i.e., bit errors) 
p = probability that an event occurs  
      in one trial (i.e., probability of  
      bit error) 
q = probability that an event does 
      not occur in one trial (i.e.,  
      probability of no bit error) 
 
p + q = 1 
mean () = nq 
variance (2) = npq 
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Equation (7) shows how we can use Equation (6) to obtain an approximation for the cumulative binomial 
distribution as well. 
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Now we can combine Equations 5 and 7, and then solve for n, as follows: 
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Note that the second term in Equation (8) is equal to zero for N = 0, and in this case the Equation is 
simple to solve.  For N > 0, solutions to Equation (8) are more difficult, but they can be obtained 
empirically using a computer. 
 
We are now ready to determine the total number of bits that must be transmitted through the system in 
order to achieve a desired confidence level.  Following is an example of this procedure: 
 
(1) Select ph, the hypothetical value of p.  This is the probability of bit error that we would like to verify.  
For example, if we want to show that P()  10-10, then we would set p in Equation (8) equal to ph = 10-10. 
 
(2) Select the desired confidence level.  Here we are forced to trade off confidence for test time.  Choose 
the lowest reasonable confidence level for the application in order to minimize test time.  The trade-off 
between test time and confidence level is proportional to –ln(1-CL).  This is illustrated in Figure 2. 
 
(3) Solve Equation (8) for n.  In most cases, this is simplified by assuming that no bit errors will occur 
during the test (i.e., N =0).     
 
(4) Calculate the test time.   The time required to complete the test is n/R, where R is the data rate. 
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Figure 2. Test Time Versus Confidence Level 
 
 
C.  Example: Application of Confidence Level Concepts to Estimation of Bit Error Probability 
 
Many telecommunication systems specify a P() of 10-10 or better.  For example, assume we are to test the 
MAX3675 (at 622Mbps) and MAX3875 (at 2.5Gbps) clock/data recovery chips to verify compliance with 
this specification.  In this case we set ph = 10-10.  We would like to design a test that would result in 100% 
confidence in the desired specification, but, since we do not have infinite test time, we will settle for a 
99% confidence level.  Next we solve Equation (8) for n using various values of N (e.g., 0,1,2,3,4).  The 
results are shown in TABLE I below. 
 

TABLE I 
Example: Estimation of Bit Error Probability (CL = 99% and ph = 10-10) 

Bit Errors  N 
N = 

Required Number of 
Bits to Transmit (n) 

Test Time for Bit Rate 
of 622 Mbps (seconds) 

Test Time for Bit Rate 
of 2.5 Gbps (seconds) 

0 4.61 x 1010 74.1 18.5 
1 6.64 x 1010 106 26.7 
2 8.40 x 1010 135 33.7 
3 1.00 x 1011 161 40.2 
4 1.16 x 1011 186 46.6 

 
 
From TABLE I we see that if no bit errors are detected for 18.5 seconds (in a 2.5Gbps system) then we 
have a 99% confidence level that P()  10-10.  If one bit error occurs in 26.7 seconds of testing, or two bit 
errors in 33.7 seconds, and so on, the result is the same (i.e, 99% confidence level that P()  10-10). 
 
In order to develop a standard P() test for the MAX3675 and MAX3875, we might select the test time 
corresponding to N = 3 from TABLE I.  Using a bit error rate tester (BERT) we transmit 1011 bits through 
each of the two chips.  The test time for 1011 bits is 2 min., 41 sec. at 622Mbps and 40.2 sec. at 2.5 Gbps.  
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At the end of the test time, we check the number of detected bit errors, .  If   3 the device has passed 
and we are 99% confident that P()  10-10. 

 
 

IV. Stressing the System to Reduce Test Time 
 
Dan Wolaver has documented a method for reducing test time by stressing the system3.  It is based on the 
assumption that thermal (Gaussian) noise at the input of the receiver is the dominant cause of bit errors. 
(Note that this assumption excludes other potential error causing effects, such as jitter, etc.)  For systems 
where this assumption is valid, the signal-to-noise ratio (SNR) can be reduced by a known quantity 
through inserting a fixed attenuation in the transmission path (i.e., the attenuation applies only to the 
signal and not the dominant noise source).  In our previous example of the MAX3675 and MAX3875, it 
was determined that jitter effects and the non-linear gain of the input limiting amplifier violated the key 
assumption of this method, so it was not employed. 
 
In systems where the assumption is valid, the probability of bit error can generally be mathematically 
calculated as4,5 
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where Q(x) is the complementary error (or ‘Q’) function included in many communications textbooks6 (a 
variety of other sources for this data are available, including the NORMDIST function in Microsoft 
Excel).  Key values for the complementary error function are listed in TABLE II. 
 
 

TABLE II 
Tabulated Values for the Complementary Error (‘Q’) Function 


 xz  dxezQ

z

x


  2

2

2
1)(


  

3.71 10-4 
4.26 10-5 
4.75 10-6 
5.19 10-7 

5.61 10-8 

5.99 10-9 

6.36 10-10 

6.70 10-11 
7.03 10-12 

 
 
Equation (7) shows that the probability of bit error increases as the SNR decreases.  If a fixed attenuation, 
, is inserted in the transmission path, then the signal power, PS, is reduced by a factor of , while the 
noise power, PN , is unchanged.  The SNR is therefore reduced from SNR = PS /PN  to SNR = PS /PN.  
The corresponding P() is increased by a factor that can be calculated using Equation (7) and TABLE II.   
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We can now repeat the test method outlined previously using a modified value for ph.  These calculations 
can then be extrapolated to any other SNR by using Equation (7).  The result is the same, but the test time 
may be significantly shorter. 
 
TABLE III is an example of the reduction in test time achievable (as compared to TABLE I) by using an 
optical signal attenuation factor of  = 1.132, which results in a reduction of SNR from 12.7 to 11.2.  In 
this example, ph is increased from 10-10 to approximately 10-8 (calculated using Equation (7) ).  This factor 
of 100 increase in ph results in a corresponding decrease in test time.  Extrapolations of the results in 
TABLE III to other SNRs retain the same confidence level (99%)  
 

TABLE III 
Example: Estimation of Bit Error Probability (CL = 99% and ph = 10-8) 

Bit Errors  N 
N = 

Required Number of 
Bits to Transmit (n) 

Test Time for Bit Rate 
of 622 Mbps (seconds) 

Test Time for Bit Rate 
of 2.5 Gbps (seconds) 

0 4.61 x 108 .741 .185 
1 6.64 x 108 1.06 .267 
2 8.40 x 108 1.35 .337 
3 1.00 x 109 1.61 .402 
4 1.16 x 109 1.86 .466 

 
The disadvantage of stressing the system is that measurements and calculations must be carried out with 
more precision.  Errors (due to round off, measurement tolerances, etc.) will be multiplied when the 
results are extrapolated to their non-stressed levels. 
 
 

V. Conclusion 
 

The concept of statistical confidence levels can be used to establish the quality of an estimate.  
Application of this idea allows a trade off of test time versus the level of confidence we desire to have in 
the test results.  Test time may be further reduced (at the expense of required precision) by introducing an 
artificial stress into the system, making the measurements, and extrapolating the results to their non-
stressed levels. 
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