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NRZ Bandwidth – HF Cutoff vs. SNR 

1 Introduction 

A fundamental goal of physical layer digital 
communication system design is transmission of the 
data signal through the system with minimum 
distortion. In order to accomplish this goal, it is 
imperative to match (as closely as possible) the 
system bandwidth to the bandwidth requirements of 
the data.  The purpose of this application note is to 
analyze the bandwidth required for effective 
transmission of nonreturn-to-zero (NRZ) encoded 
data. 

2 NRZ Encoded Data 

In order to transmit binary data, it must be encoded 
into a signal (e.g., an electrical or optical waveform) 
that is suitable for the transmission medium (e.g., 
copper cable, optical fiber, etc.). Of the many binary 
data encoding methods currently in use, nonreturn-
to-zero (NRZ) is one of the most common.   

In NRZ encoding, each binary digit (bit) is assigned 
an equal amount of time, called the bit period, Tb. 
During each bit period, a binary one is represented 
by a high amplitude, and a binary zero is represented 
by a low amplitude. The sequence of encoded bits is 
called the bit stream or data signal. Timing 
synchronization is maintained by a square-wave 
signal called the bit clock. An NRZ-encoded bit 
stream and the bit clock are illustrated in Figure 1. 

 

 

 

 

 

 

 

 

3 Autocorrelation of Random NRZ Data 

The Wiener-Khinchin theorem states that, for a 
random process that is at least wide-sense stationary, 
the power spectral density of the process is equal to 
the Fourier transform of its autocorrelation 
function1. Using this theorem, we can compute the 
power spectral density of random NRZ data by first 
determining the autocorrelation function and then 
calculating its Fourier transform. 

Random binary data can be defined as a sequence of 
bits in which the probability that any given bit in the 
sequence has a value of one or zero is independent 
of the value of all other bits in the sequence.  In 
other words, we can never predict the value of the 
next bit in the sequence based on the previous bits 
(there are no patterns). We can use the random data 
model as the basis for determining the necessary 
system bandwidth.  

The autocorrelation of any function of time can be 
computed by multiplying the function by a time-
shifted version of itself and then integrating this 
product over all values of the time shift. This can be 
written mathematically as 

     


2/

2/
)()(lim)(

T
1 T

TT
XX dttXtXR           (1) 

where RXX()  represents the autocorrelation of the 
function X(t), t represents time, and  represents the 
time-shift (sometimes called the lag or lag factor). 
Figure 2 is an example showing RXX(Tb), the 
autocorrelation of X(t) at a lag factor of 1 bit period, 
where X(t) equals the NRZ representation of the 
binary sequence 1011100. 

To compute the autocorrelation of a random bit 
stream it is important to observe that there is no 
correlation for lag factors outside of plus or minus 
one bit period (i.e., RXX() = 0 for  < -Tb or  > Tb). 
This is due to the random nature of the bit stream, 
which results in the fact that, for any value of t, there 
is an equal probability that X(t) represents a one or a 
zero.  
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Figure 1. NRZ encoded bit stream 
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For example, if (-Tb <  < Tb) and we assume that 
the probability that [X(t) = -A] is 50% and the 
probability that [X(t) = +A] is also 50%, then there 
are only four equally probable possibilities for the 
product  X(t)X(t-); i.e., (A)(A) = A2, (A)(-A) = -A2, 
(-A)(A) = -A2, and (-A)(-A) = A2. Since there is 
equal probability of A2 and -A2 at each point in the 
autocorrelation of a random bit stream, the sum of 
the products at each of the points will, in the limit, 
be equal to zero.  The important conclusion is that, 
for random data, the limits on the autocorrelation 
integral of equation (1) can be changed to (-Tb and + 
Tb) since, in the limit, the autocorrelation will be 
zero outside of this interval. 

Using the above conclusion, the autocorrelation of a 
random bit stream can be greatly simplified, since 
we only have to consider lag factors between -Tb and 
+Tb.  In this region, the autocorrelation starts at 
RXX(-Tb) = 0, increases linearly to a peak value  at 
RXX(0), and then decreases linearly to a final value at 
RXX(+Tb) = 0. The resulting triangular auto-
correlation function is illustrated in Figure 3. 

 

 

 

 

 

 

4 Power Spectrum of Random  
NRZ Data 

The Fourier transform of a triangular function 
centered at zero with amplitude  and width 2Tb 
(i.e., the autocorrelation function shown in Figure 3) 

is equal to Tbsinc2(Tbf), where sinc(f) is defined as 
(sin f)/f and f is the frequency in Hertz2. This 
result is the power spectral density of the random 
NRZ bit stream and is illustrated in Figure 4 (note 
that the frequency axis is normalized to the data 
rate). 

 

 

 

 

 

 

 

 

 

 

5 Bandwidth Limits 

The power spectrum of random NRZ data includes 
non-zero components that extend out to infinite 
frequencies. Since real systems have high frequency 
cutoffs that limit the bandwidth to finite values, an 
important question is: Where should these cutoffs  
be placed? 

Since the fundamental frequency of the fastest bit 
transitions in an NRZ bit stream (i.e., a repeating 
one-zero pattern) is one-half of the data rate, this 
represents the lowest possible high-frequency cutoff. 
More bandwidth is required, however, to reduce 
distortion of the data signal and increase the signal-
to-noise ratio.  

Integration of the power spectrum of Figure 4 over 
the full frequency range provides considerable 
insight into possible choices for the high-frequency 
cutoff, as shown in Figure 5. This figure shows that 
the majority of the power (94% of the total) in 
random NRZ data is contained in the spectrum 
between the frequencies of 0 and 0.75 times the data 
rate. Tabulated values for the cumulative power of 
Figure 5 are shown in Table 1. As Figure 5 and 
Table 1 illustrate, the gain in signal power with 
increased bandwidth almost levels off somewhere 
between 0.75 and 0.8 times the data rate and then 
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Figure 2. Autocorrelation example with  = Tb 
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Figure 3. Autocorrelation of random NRZ data 
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Figure 4. Power spectrum of random NRZ data 
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increases somewhat between 1.2 and 1.6 times the 
data rate. It is important to note that, if the 
bandwidth is doubled from 0.75 to 1.5 times the data 
rate, then the total cumulative power increases from 
93.6% to 98.1% for a net power gain of only 4.5%. 
Another way to state this is that a 100% increase in 
bandwidth (from 0.75 to 1.5 times the data rate) only 
provides a 4.5% increase in signal power.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When choosing the high-frequency cutoff, it is 
important to consider the effect of increased 
bandwidth on the system noise. The power spectrum 
of random Gaussian noise can be modeled as a 
constant (horizontal line) over the entire frequency 
spectrum3. This means that the cumulative noise 
power increases linearly as the bandwidth increases, 
and therefore the system signal-to-noise ratio (SNR) 
will also change with the bandwidth. As noted 
previously, increasing the high-frequency cutoff 
above 0.75 results in only a small increase in signal 
power. But, since the cumulative noise power 
increases linearly over the entire spectrum, this 
increase in high-frequency cutoff will result in a 
significant gain in noise power. 

For example, let us assume that the SNR at a 
normalized bandwidth of 0.75 is equal to 12.7, 
which equates to a bit error ratio (BER) of 10-10, 
when considering only the effects of Gaussian noise. 
(For more detail on the relationship between SNR 
and BER see Maxim application note HFAN-4.0.2 
"Converting Between RMS and Peak-to-Peak Jitter 
at a Specified BER.") If the normalized bandwidth is 
increased by 33% (to 1.0), the noise power will also 
increase by 33%. Meanwhile, the signal power will 
increase by only 1.5%. The result is a change in 
system SNR that can be calculated as  
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where S is the signal power, N is the noise power, 
and fc is the high-frequency cutoff. For an SNR of 
9.65, the corresponding BER is 6.84  10-7. Thus a 
33% increase in bandwidth resulted in a reduction of 
BER by a factor of 6,840! 
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Figure 5. Cumulative (integrated) power spectrum of 
random NRZ data  

 

 

s)Rate(bits/Data

z)Freqency(H
 Cumulative % 

of Total Power 

0.5 81.4% 
0.75 93.6% 
0.8 94.3% 
0.9 95.0% 
1.0 95.1% 
1.1 95.2% 
1.2 95.5% 
1.3 96.2% 
1.4 97.1% 
1.5 98.1% 
1.6 98.9% 
1.7 99.5% 
1.8 99.9% 

Table 1. Tabulated Values for 
Cumulative Power in Random NRZ 
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6 Conclusions 

For systems transmitting random NRZ data, the 
majority of the signal power (94%) is contained 
within the frequency spectrum between 0 and 0.75 
times the data rate. Noise power, on the other hand, 
accumulates at a constant rate as the high-frequency 

cutoff is increased. The result is a rapid decrease in 
signal-to-noise ratio when the high-frequency cutoff 
is increased beyond 0.75, which leads to a 
significant degradation in bit error performance. 
Thus, for most systems transmitting random NRZ 
data, 0.75 times the data rate is a good choice for the 
high-frequency cutoff. 
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